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Polymer–filler interaction for nanocomposites was quantified by introducing Interface Area Function
(IAF), to account for the nanofiller characteristics comprising of the specific surface area, correlation
length and the filler volume fraction. IAF supplants the immeasurable filler characteristic terms,
rendering tractability to the equation derived by considering the restraining forces acting on a nanofiller-
elliptical platelet-embedded in polymer matrix. However, neglecting such terms reduces the same to
Kraus’s equation. Recognition of the due importance of such filler characteristics, by introduction of IAF,
resulted in better fitment of swelling data and also conformance with the trend predicted by Zisman’s
interpretation of surface energy. Experimental values of Young’s modulus of natural rubber and styrene–
butadiene rubber nanocomposites and those predicted by Guth–Gold and Halpin–Tsai equations for
composites conform post-introduction of IAF, with mere 5–20% deviations. The accurate fitment of the
resulting constitutive equations indicates suitable integration of the shape and aggregate effects.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The degree of crosslink density in vulcanized elastomeric gum
compounds can be estimated by applying the Flory–Rehner
network theory [1]. But their extrapolation into the domain of filled
compounds presents certain theoretical and practical complica-
tions, prime among them being the restriction to deformation in
proportion with the sample dimension. These restrictive forces
arise from the presence of the rigid inclusions engrafted in the
rubber matrix.

Bueche [2], Kraus [3] and Boonstra and Dannenberg [4] have
separately studied this problem to come up with the understanding
that although strong theoretical reasons cannot be assigned, the
apparent crosslink density from equilibrium swelling data accounts
for the polymer–filler interaction. This has established that
swelling experimentation on filled compounds yields a measure of
the physical crosslinking in elastomeric compounds.

The observations of Lorenz and Parks [5] have led to the
conclusion that the swelling of bulk rubber is essentially the same
in both the filled and the unfilled compounds and the effect of the
inclusion is predominantly felt in the interfacial region only. Within
this region, the restriction to swelling is maximum due to adher-
ence of rubber to filler by means of adsorption. On moving radially
outwards from the filler, which is the epicenter of the restraining
: þ91 3222 220312.
owmick).
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forces, the effect subsides and beyond a certain imaginary sphere of
influence, the rubber swells to the same extent as the bulk of the
gum compound. This swelling model was effectively utilized by
Kraus [6] to quantize the effect on swelling exerted by bonded
spherical particles in rubber matrices.

Although the swelling in the case of polymer nanocomposites
(PNCs) agrees in principle with this, it undervalues the importance
of the extended interface offered by the change in filler shape and
aggregate characteristics. Literature search indicates that the suit-
ability of the Kraus plot to platelet-like nanofillers has not been
investigated. In the present work, we evaluate the same and
attempt to extend it to the domain of PNCs by incorporating certain
modifications. The extra terms that evolve on application of ‘‘the
swelling of the rubber shell’’ approach to the platelet filler are
represented by an interface area function (IAF). This function maps
the shape and aggregate effects, characteristic of nanofillers, to
accurately determine the polymer–filler interaction in PNCs. Since
the polymer–filler interaction has direct consequence on the
modulus, the derived function is subjected to validation by intro-
ducing the function in established models for determination of
composite modulus.

Some earlier reports dealing with the micromechanics of the
intercalated or exfoliated polymer–clay nanocomposites [7–9] have
attempted to understand the reinforcing mechanism of polymer-
layered silicate nanocomposites. In our earlier communications
[10–15], on clay and silica nanocomposites we have attempted to
correlate the reinforcement with swelling behavior in terms of the
volume fraction of rubbers. It appears that there is a gap in the
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literature on this subject. Thus, in this paper, apart from investi-
gating the swelling behavior, we also address the superior rein-
forcing efficiency of rubber nanocomposites by introducing the
new interface area function into the composite theories proposed
by Guth and Gold [16], Guth [17] and Halpin and Tsai [18,19].

The reinforcing effect of spherical colloidal fillers on elastomers
was studied by Guth and Gold [16], who obtained the following
equation.

E ¼ Em

h
1þ 2:5fþ 14:1f2

i
(1)

Guth [17] later modified the above equation by introducing a shape
factor a (length/breadth) in order to account for the accelerated
stiffening at higher loadings, considering that the aggregate
structures of spherical fillers resemble rod-like filler particles
embedded in a continuous matrix. Guth, thus, arrived at the
modified Guth–Gold equation,

E ¼ Em

h
1þ 0:67afþ 1:62ðafÞ2

i
(2)

The elastic modulus of composite materials reinforced by discon-
tinuous cylindrical fibers or lamellar shapes is expressed by the
Halpin–Tsai equations [18,19], as shown in the following equation.

E ¼ Em

�
1þ xhf

1� hf

�
(3)

where, x ¼ 2a and h ¼
h
ðEf=EmÞ � 1

i
=
h
ðEf=EmÞ þ x

i
.

However, at high filler concentration, the predicted value of Eq.
(3) does not agree with the experimental data [20], due to the
exclusion of several important factors in Eq. (3).
1.1. Theory

For determination of the restriction to swelling offered by
adhering filler, Kraus considered a filler particle of radius R
engrafted in a matrix of rubber. The rubber is assumed to swell,
whereas the filler is an inextensible body. It is further presumed
that the polymer–nanofiller interaction is strong enough to with-
stand the interfacial stresses generated due to swelling. Thus, as the
rubber swells, with the rubber–filler bond remaining intact,
a consequential restriction to swelling is registered.

Since the nanofillers, particularly the nanoclays, have different
structures, the model generated with spherical filler as the
restraining body is inexpedient. Thus, we consider the entrapment
of a non-expansible elliptical filler (with eccentricity 3) within the
rubber matrix (Fig. 1).

In polar coordinates, an ellipse with one focus at the origin and
the other on the negative x-axis is represented by the general
equation r(1þ 3 cos q)¼ l, where l is the semi-latus rectum of the
Fig. 1. Elliptical nanofiller embedded in a rubber matrix.
ellipse. Thus, analogous to the spherical filler of radius R in the
Kraus model, we consider an elliptical filler given by R(1þ 3 cos q),
in the polar coordinate. The swelling is completely restricted at the
surface and the restriction diminishes radially outwards (Fig. 1).
This restriction is experienced till the hypothetical sphere of
influence of the restraining filler is existent. We can designate rapp

(>R(1þ 3 cos q)) as a certain distance away from the center of the
particle where the restriction is still being felt and as the distance
approaches infinity, the swelling assumes normality, as in a gum
compound. This distance rapp, however, is not a fixed or well
defined point in space and in fact is variable and is conceived to
extend till the outer surface of the hypothetical sphere of
influence.

Any volume element in the unswelled rubber can be repre-
sented, in terms of polar coordinates, as dr, r dq, r sin q dj. Post-
swelling this element will assume the dimension of qr dr, qtr dq,
qtr sin q dj, where q is a function of r. From the requirement of solid
angle conservation, the tangential (qt) and the radial (qr) compo-
nents of the linear expansion coefficient (q0) must differ. Further-
more, to be able to derive the volume swelling deficiency caused by
each restraining particle we need to be able to relate these two
quantities.

Also, the distance by which the elemental volume gets displaced
from the center of the particle (r0), post-swelling, is

r0 ¼
Z rapp

Rð1þ3 cos qÞ
qrdr þ Rð1þ 3 cos qÞ (4)

Because of the requirement,

r0 dq ¼ qtr dq (5)

we have,

qtr � Rð1þ 3 cos qÞ ¼
Z rapp

Rð1þ3 cos qÞ
qr dr (6)

Differentiating with respect to ‘r’,

qr ¼ qt þ rðdqt=drÞ (7)

This equation suitably relates the radial (qr) and the tangential (qt)
components of the linear expansion coefficient (q0).

Now, if we are to assume that the rubber swells equally in all
directions, even in the presence of the filler, the swollen volume in
the presence of filler is

Z 2p

0

Z p

0

Z rapp

Rð1þ3 cos qÞ
qrq2

t r2 sin q dr dq dj (8)

This is the annular volume enclosed between the top surface of the
filler, extending radially till the upper limit of the hypothetical
sphere of influence (Fig. 1). The lower limit is thus set to
R(1þ 3 cos q). The assumption that the rubber swells equally in all
directions can be safely incorporated, because the farther one
moves away from the surface, the lesser is the restriction imposed
and in such circumstances the subsiding extent of influence is
better represented by a sphere than an ellipsoid. Also, in the
absence of any restraining media the swollen volume of the
element would have been

ZZZ
q3

0r2 sin q dr dq dj (9)

Thus, if we consider that the sphere of influence exists till rapp, the
swelling deficiency will be felt within a shell of rubber bound
between R(1þ 3 cos q) and rapp. This can be equated to the differ-
ence of expressions (8) and (9), which implies that the swelling
deficiency per particle, Dv, is
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Dv ¼
Z 2p

0

Z p

0

Z rapp

Rð1þ3 cos qÞ

�
qrq2

t � q3
0

�
r2 sin q dr dq dj (10)

Using Eq. (7) in Eq. (10), we have

Dv ¼
Z 2p

0

Z p

0

Z rapp

Rð1þ3 cos qÞ

h
fqt þ rðdqt=drÞgq2

t � q3
0

i

� r2 sin q dr dq dj (11)

Integrating with respect to dj over the limits,

Dv ¼ 2p
Z p

0

Z rapp

Rð1þ3 cos qÞ

h
fqt þ rðdqt=drÞgq2

t � q3
0

i
r2 sin q dr dq

(12)

But, the following identity can be used to evaluate the integral:

r2q3
t þ r3q2

t ðdqt=drÞ ¼ 1=3
h
d
�

r3q3
t

�.
dr
i

such that Eq. (12) simplifies to

Dv ¼ 2p
Z p

0

Z rapp

Rð1þ3 cos qÞ

�
1
3

d
dr

�
r3q3

t

�
� q3

0r2
�

dr sin q dr dq

(13)

Now, integrating with respect to dr for the radial component and
passing on the limits, we get,

Dv ¼ 2p
Z p

0

(
1
3

r3
appq3

t �
1
3

R3ð1þ 3 cos qÞ3q3
t

�
q3

0
3

h
r3

app � R3ð1þ 3 cos qÞ3
i)

sin q dq

Since there can be no swelling at the lower limit, which is the filler
surface, qt at lower limit is unity. Replacing for that, we have,

Dv ¼ 2p
Z p

0

(
1
3

r3
appq3

t ðrÞ �
1
3

R3ð1þ 3 cos qÞ3$1

�
q3

0
3

h
r3

app � R3ð1þ 3 cos qÞ3
i)

sin q dq

On rearranging, the swelling deficiency is

Dv ¼ 2p
Z p

0

(
1
3

r3
appq3

t ðrÞ �
1
3

R3ð1þ 3 cos qÞ3
�

1� q3
0

�

�
q3

0r3
app

3

)
sin q dq

Dv ¼ 2p
3

Z p

0

hn
r3

app

n
q3

t ðrÞ � q3
0

o
� R3

�
1� q3

0

��
1þ 33 cos q

þ 332 cos2 qþ 33 cos3 q
�i

sin q dq

Now, integrating with respect to dq, we arrive at the equation

Dv ¼ 2p
3

"n
� r3

app

n
q3

t ðrÞ � q3
0

o
cos q

ip

0

o
þ R3ð1� q3

0Þ

�
n

cos qþ 33 cos2 q

2
þ 32 cos3 qþ 33 cos4 q

4

o�p

0

#

On introducing the limits, it reduces to

Dv ¼ 2p
3

h
� r3

app

n
q3

t ðrÞ � q3
0

o
ð � 2Þ þ R3

�
1� q3

0

��
�2� 232

�i
or,

Dv ¼ 4p
3

h
r3

app

n
q3

t ðrÞ � q3
0

o
þ R3

�
q3

0 � 1
��

1þ 32
�i

Taking R3q0
3 out as the common factor and rearranging,

Dv ¼
4pq3

0R3

3

"�
1� 1=q3

0

��
1þ 32

�
þ

r3
app
�

q3
t ðrÞ=q3

0 � 1
	

R3

#

(14)

For us to determine the precise value of the swelling deficiency, the
term qt needs to be resolved into a physically tangible quantity.
Striving to achieve that we realize that at the filler surface restric-
tion to swelling is maximum and it reduces as we traverse radially
outwards. As a consequence, at the filler surface the expansion is
least and the expansion coefficient qt is unity. Hence, the linear
swelling coefficient is such a function of (r) that

f ðNÞ ¼ 0

and

f fRð1þ 3 cos qÞg ¼ 1:

Thus, qt can be represented as,

qt ¼ q0 � ðq0 � 1Þf ðrÞ (15)

Using Eq. (15) in Eq. (14) and passing the limits,

Dv ¼
4pq3

0R3

3

"�
1� 1=q3

0

��
1þ 32

�
þ

lim
r/N

r3
app

�

q3
t =q3

0

�
� 1


R3

#

(16)
Also, the function limr/N r3

app½ðq3
t =q3

0Þ � 1� can be represented as
a converging series, where neglecting the higher order terms we get,

lim
r/N

r3
app

h�
q3

t =q3
0

�
� 1

i
¼ �3ð1� 1=q0Þ lim

r/N
r3

app f ðrÞ

Again, assuming the following term to be a constant
k ¼ limr/N r3

appf ðrÞ=R3, the swelling deficiency for one particle is
arrived at by replacing for qt and k in Eq. (16),

Dv ¼
4pq3

0R3

3

h�
1� 1=q3

0

��
1þ 32

�
� 3kð1� 1=q0Þ

i
(17)

Presuming that within each unit volume of rubber the filler
platelets are segregated in such a way that the filler–filler interac-
tions are negligible, the swelling deficiency for all N particles can be
designated as DV¼NDv.

Also,

N ¼ 3f=4pa2bð1� fÞ (18)

where, f is the filler volume fraction and a and b are the major and
minor axes of the ellipse representing the filler.

Thus, combining Eq. (17) and Eq. (18),

DV ¼ R3

a2b
q3

0

h�
1� 1=q3

0

��
1þ 32

�
� 3kð1� 1=q0Þ

i
½f=ð1� fÞ�

(19)

The volume swelling ratios are inversely proportional to the
equilibrium volume fraction of the rubber in the corresponding
swollen systems (filled and gum), such that
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Q=Q0 ¼ Vr0=Vrf ; 1=q3 ¼ vr

Also,

Q=Q0 ¼
�

q3
0 þ Dv

�.
q3

0

From, Eq. (19),

Q=Q0 ¼
�
q3

0 þ Dv
�

q3
0

¼ 1þ
h�

1� 1=q3
0

��
1þ 32

�
� 3kð1� 1=q0Þ

i

� R3

a2b
½f=ð1� fÞ�

Substituting for the equilibrium volume fraction we have,

Vr0=Vrf ¼ 1þ
h
ð1� vr0Þ

�
1þ 32

�
� 3k

�
1� v1=3

r0

�i

� R3

a2b
½f=ð1� fÞ�

¼ 1�
h
3k
�

1� v1=3
r0

�
þ
�

1þ 32
�

vr0 �
�

1þ 32
�i

� R3

a2b
½f=ð1� fÞ�

Factoring out (1þ 32) from above equation, we arrive at the final
form

Vr0=Vrf ¼ 1�
"

3k
�

1� v1=3
r0

�
�
1þ 32

� þ vr0 � 1

#
R3

a2b

�
1þ 32

�
½f=ð1� fÞ�

(20)

Thus, it is understood that Vr0=Vrf varies linearly, although not with
f/(1� f), but with a somewhat similar function which continues to
bear the nanofiller’s characteristic. In order to isolate the function,
Eq. (20) is rearranged to get,

1� Vr0=Vrf ¼
�

3k�
1þ 32

�� 1� 3k�
1þ 32

�v1=3
r0
þ vr0

�

� R3

a2b

�
1þ 32

�
½f=ð1� fÞ�

or,

1� Vr0=Vrf�
3k�

1þ 32
�� 1� 3k�

1þ 32
�v1=3

r0
þ vr0

�
R3

a2b

�
1þ 32

� ¼ f=ð1� fÞ

by substituting m0 for the complex function below,

�
3k�

1þ 32
�� 1� 3k�

1þ 32
�v1=3

r0
þ vr0

�
R3

a2b

�
1þ 32

�
¼ m0 (21)

The above equation can be reduced to the form

f=ð1� fÞ ¼
1�

�
Vr0=Vrf

�
m0

or,

1=ð1� fÞ ¼
1�

�
Vr0=Vrf

�
m0

þ 1

The value of f can be determined by taking the inverse of the above
term and rearranging

ð1� fÞ ¼ m0=
h
1�

�
Vr0=Vrf

�
þm0

i

Thus,

f ¼
h
1�

�
Vr0=Vrf

�i.h
1�

�
Vr0=Vrf

�
þm0

i
(22)

The original Kraus equation can be similarly rearranged to

f0 ¼
h
1�

�
Vr0=Vrf

�i.h
1�

�
Vr0=Vrf

�
þm

i
(23)

where,

m ¼
h
3c� 1� 3cv1=3

r0
þ vr0

i
(24)

‘‘c’’, defined as c ¼ limr/N r3f ðrÞ=R3, is the constant analogous to
‘‘k’’ here.

On comparing these two equations, Eqs. (22) and (23), the
presence of filler characteristics as additional terms in the expres-
sion for the slope is obvious. Thus, if a function has to accurately
map the filler characteristics, it needs to be defined as the ratio of
the two terms above, such that

f=f0 ¼ j ¼
h
1�

�
Vr0=Vrf

�
þm

i.h
1�

�
Vr0=Vrf

�
þm0

i
(25)

In an ideal case, when, b¼ a¼ R, so that 3¼ 0 and d¼ k, the equa-
tion we derived (Eq. (20)) reduces to the Kraus equation and so does
the equation for the slope (Eq. (21)) to a form similar to that
reported by Kraus (Eq. (24)) [6]. In the ideal case of the spherical
filler embedment, the above function, j, equates to 1 (Eq. (25)).

Else,

j ¼
1�

�
Vr0=Vrf

�
þ
h
3c�1�3cv1=3

r0
þvr0

i
1�

�
Vr0=Vrf

�
þ
�

3k�
1þ 32

��1� 3k�
1þ 32

�v1=3
r0
þvr0

�
R3

a2b

�
1þ 32

�

or, in terms of a and b,

j ¼
1�

�
Vr0=Vrf

�
þ
h
3c�1�3cv1=3

r0
þvr0

i

1�
�

Vr0=Vrf

�
þ
"

3k�
2a�b

a

��1� 3k�
2a�b

a

�v1=3
r0
þvr0

#
R3

a2b

�
2a�b

a

�

(26)

The introduction of f (¼jf0) into to the original Kraus equation
would thus incorporate the necessary amendment to accommodate
the nanofiller characteristics. But, the function, j, thus arrived at is
complicated and intractable because of the presence of the terms
‘a’, ‘b’ and ‘k’ (each of which is filler and system dependent) in it.
Neglect of the additional terms in Eqs. (20) and (21) while drawing
Kraus’s plot would thus produce erroneous results. Hence it is
required to replace the above function (Eq. (26)) with one
comprising of known and easily measurable variables. This justifies
our assumption that in the case of a platelet-like nanoparticle,
represented here as an elliptical restraining feature, the available
filler surface area at the interface and aspect ratio have a dominant
role to play in the determination of the polymer–nanofiller
interaction.

However, the aspect ratio determination for each particle in
a polymer nanocomposite is impractical. It would require rigorous
sample preparation, followed by transmission electron microscopy
imaging and its complicated image analysis. It would also depend
on the extent of exfoliation/intercalation achieved, which varies
with the system and the processing conditions introduced, thereby
preventing any attempt at generalizations.

Thus, a new function is required to accurately map the polymer–
filler interactions in PNCs, which would adequately integrate all the
dominant characteristics of the platelet-like nanofillers in the



Fig. 3. Depiction of change in available and lost surface due to differing correlation
length.
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nanocomposite. In accord with the above theory and the subse-
quent discussion, the polymer–nanofiller interaction parameter
can be determined by introducing a new corrective function that is
derived logically in the following section.

1.2. Derivation of the new corrective function

From the above discussion one can infer that certain assumptions
made for obtaining Kraus’s plot get violated in polymer nano-
composites having nanofillers, represented here by an elliptical
shape. The shape and the aggregation effects of the nanofillers have
not been duly accounted for in the Kraus plot. Also, after having
meticulously deduced the expression for nanofillers (nanoclay,
nanofiber, etc.), the assumption that the shape and the aggregation
effects are included in the constant k would be a gross misappropri-
ation. Hence, we logically deduce a corrective interface area function.

Since these nanofillers often have a rectangular shape, the
elliptical shape assigned introduces some errors in calculation
(Fig. 2). As illustrated in Fig. 2, the ellipse having major axis ‘a’ and
minor axis ‘b’, which can map the platelet-like nanofiller, would
have a deficit of (4�p) in the interfacial area per particle. This is
the difference between the rectangular area (4ab) and that of the
ellipse (pab). However, it needs appreciation that as the aspect ratio
increases the ellipse attains a rectangular shape, which would
eventually almost eliminate the difference in areas. Thus, while
attempting to derive the new function it is realized that a correction
factor corresponding to the interface area needs to be introduced.
The discrepancy due to shape and the aggregation effects can be
addressed by introducing an interfacial area function. The shape
factor can be resolved by introducing the aspect ratio. But as its
accurate measurement in the nanocomposite is rigorous and error
prone, we introduce the filler density (r) and its specific surface
area (z) to address the shape factors. This can successfully represent
the aspect ratio effects because changes in aspect ratio are reflected
in the ratio of particle surface area to particle volume, that is,
density� surface area/g.

Also, the loss in available surface area due to overlapping and
aggregation is quite substantial in the case of nanofiller. As illus-
trated in Fig. 3, it is directly dependent on the interparticle distance
between the fillers and hence also on the filler loading. We propose
the introduction of these two terms in the form of the correlation
length between the nanoparticles (x) and the filler volume fraction
(f), respectively, to the interfacial area function.

The interface area function (IAF) is thus designed to represent
the filler characteristics, {R3(1þ 32)/a2b}, that surfaced in Eq. (20)
and those inseparable from the expression for the slope (Eq. (21)).
Thus, the corrective function, j (IAF), introduced to accommodate
the shape and aggregation effects can be defined as

j ¼ r$z$x$f (27)

This customized function also circumvents the intractability
problem pertinent to Eq. (26). Unlike the area function discussed
previously to relate the physical properties of carbon black to the
Fig. 2. Comparing the elliptical shape against its enclosing rectangular shape.
overall viscoelastic properties of the composite [21], the function
introduced here is unique because it is a dimensionless quantity.
Thus, it would be able to better represent the property without any
significant bias arising out of the differences in magnitudes of the
constituting components.

It can be concluded that, the IAF which reflects the surface
energy, aspect ratio, nanofiller content and also, the dispersion of
the nanofillers in the nanocomposite would hence successfully map
the filler characteristics in the nanocomposite to reduce Eq. (20)
into the original Kraus form, where f¼ jf0.

Thus, the modified Kraus equation can be represented as,

Vr0=Vrf ¼ 1�m½jf=ð1� jfÞ� (28)

where, j is the new Interface Area Function (IAF).
These observations are compiled to tailor the Halpin–Tsai equa-

tion into a much simpler form for PNCs comprising of matrix–filler
combinations having inordinately disparate sets of Young’s moduli.
This was done by addressing the shape, size and aggregate related
factors a priori to adequately supplant those in Eq. (3). For rubber–
clay system, Ef [ Em. Therefore, (Ef/Em)� 1 z (Ef/Em)þ x z Ef/Em,
and h z 1. This reduces the Halpin–Tsai equation (Eq. (3)) into

E ¼ Em

�
1þ 2af

1� f

�
(29)

As seen, Halpin–Tsai equation has a term a, raised to the power of
one, to accommodate the filler aspect ratio. Since our function
intends to supplant the same, the new equation is expected to have
a reduced dependence on the aspect ratio. This understanding is
subjected to test by sequentially diluting the presence of aspect
ratio in the equation. The first modified Halpin–Tsai equation
contains a correction term in the form of a shape reduction factor
(a0.5), Eq. (30), while the second modified Halpin–Tsai equation, Eq.
(31), is devoid of any extra shape related corrections.

Modified Halpin–Tsai I,

E ¼ Em

�
1þ a0:5jf

1� jf

�
(30)

and modified Halpin–Tsai II,

E ¼ Em

�
1þ jf

1� jf

�
(31)

2. Experimental

2.1. Materials

Natural rubber, (Mooney Viscosity, ML1þ4¼ 60 at 100
�
C) was

supplied by the Rubber Board, Kottayam, Kerala, India. Styrene
butadiene rubber, (SBR-1502, Mooney Viscosity, ML1þ4¼ 53 at
100 �C and bound styrene content of 23.5%) was procured from
Korea Kumho Petrochemical Co. Ltd., Seoul, Korea.



Table 1
Formulation of the mix used

Ingredient Loading (wt. phr) Loading (vol. phr)

Rubber 100.0 100.0
Zinc oxide 5.0 0.84
Stearic acid 2.0 2.21
IPPD 1.0 0.89
Sulphur 2.0 0.91
CBS 0.8 0.50
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The fillers used were organomodified clays – Cloisite 15A
(Montmorillonite clay from Southern clay products, USA) and
Pangel B20 (Sepiolite clay from Tolsa S.A., Spain) – and carbon
nanofiber, Pyrograf-III, PR-24 (Vapour Grown Carbon Fiber from
Pyrograf� Products, Inc., USA).

Standard rubber grade zinc oxide, sulphur, benzene and toluene
were procured from Merck Ltd., Mumbai, India. Stearic acid was
supplied by Shreeji Fine Chemicals, Mumbai, India and N-cyclo-
hexyl-2-benzothiazyl sulfenamide (CBS) by ICI India Ltd., Chemicals
Division, Mumbai, India. N-Isopropyl-N0-phenyl-p-phenylenedi-
amine (IPPD) was provided by Bayer Chemicals AG (presently,
Lanxess), Leverkusen, Germany. Ethanol was procured from Bengal
Chemicals and Pharmaceuticals Ltd., Kolkata, India.

The formulation used in this investigation is tabulated in Table 1.
The basic formulation was kept common for all the systems. There
was no variation in the loading of anti-oxidant, curatives and cure
accelerators.

The samples and their designations are illustrated in Table 2.
2.2. Preparation of nanocomposites

The nanofiller was initially mixed with the rubber in a Bra-
bender Plasticorder (PLE 330) at 80 �C at 60 rpm for 2 min. The
remaining compounding ingredients, except the curative package,
were then added and mixed in the Brabender under the above
mentioned conditions for 3 min. The curatives were subsequently
added to the resulting masterbatch in a two-roll mill (Schwaben-
than, Berlin), following standard mixing sequence. The filler
loading was varied from 2 phr till the loading at which saturation of
mechanical properties was observed. This has been discussed in our
previous reports [22,23].

The optimum cure time of the mixes was obtained from
a Monsanto Oscillating Disc Rheometer (ODR-100s) in accord with
ASTM D 2084-93. The tensile slabs were prepared by curing till
optimum cure time at 150 �C in a David-Bridge hydraulic press
(supplied by Castleton, Rocchdle, England) at a pressure of 5 MPa.
The specimens were conditioned at room temperature for 16 h
before carrying out the testing.
2.3. Swelling studies

The cured samples were separately immersed in benzene and
toluene for 48 h at an ambient temperature of 25 �C. The
Table 2
Filler loading and corresponding sample designation

Rubber NR SBR

Fillera/loading (phr) 15A SP F 15A SP F

2 N15A2 NSP2 NF2 S15A2 SSP2 SF2
4 N15A4 NSP4 NF4 S15A4 SSP4 SF4
6 N15A6 NSP6 NF6 S15A6 SSP6 SF6
8 – – – S15A8 – –

a Cloisite 15A (15A), Pangel B20 (SP), Pyrograf-III (F).
equilibrium volume fraction of rubber in the swollen gel was also
calculated using the following equation [24].

Vr ¼
ðD� FTÞr�1

r

ðD� FTÞr�1
r þ A0r�1

s
(32)

where, D¼Deswollen weight, F¼weight fraction of the insoluble
component, T¼ initial weight of the test specimen, rr¼ density of
rubber, rs¼ density of solvent, A0¼ amount of solvent absorbed.

2.4. Tensile properties

Tensile specimens were punched out from the molded sheets
using ASTM Die-C. The tests were carried out as per the ASTM D
412–98 method in a Universal Testing Machine (Zwick Z010) at
a cross-head speed of 500 mm/min at 25� 2 �C. Young’s modulus
was calculated from the slope of the tensile curve in the linear
region (upto 30% elongation). The average of three tests is reported
here for the modulus.

2.5. Transmission electron microscopy (TEM)

The nanocomposite samples for TEM analysis were prepared by
ultra cryomicrotomy using Leica Ultracut UCT, at around 40 �C
below the glass transition temperature (Tg) of the compounds.
Freshly cut glass knives with cutting edge of 45� were used to get
the cryosections of 50 nm thickness. The microscopy was per-
formed using JEOL-2100 electron microscope, having LaB6 filament,
operating at an accelerating voltage of 200 kV. Image analysis of the
bright field images was performed using UTHSCSA Image Tool for
Windows Version 3.00. It was used to determine the correlation
length used in the newly introduced interface area function.

2.6. Surface energy

The surface energy of the solid polymers was determined by
contact angle measurement, while that of the nanofillers was
determined using Washburn and Fowkes equations. The theory,
procedural details and references, along with the results have been
discussed in our earlier papers [22,23].

3. Results

The density and specific surface area for the fillers and the
nanocomposites are tabulated in Table 3. The N2 surface area values
have been earlier reported in the literature [25–27] and the density
was taken from the material data sheets of the respective fillers.
The correlation length was determined from image analysis of the
TEM pictures of the respective nanocomposites, which have been
reported in our earlier reports [22,23,28].

The modified Kraus plots for the three sets of fillers are shown in
Fig. 4a–d. Fig. 4a and b corresponds to the swelling studies of the
natural rubber (NR) and styrene–butadiene rubber (SBR) PNCs,
respectively, in benzene. Fig. 4c and d is the analogous modified
Kraus plot using toluene as the swelling solvent. The lines drawn
are the best fit lines of the corresponding scatter points of the
experimental data sets. The slopes of the modified Kraus plots and
Table 3
Interfacial area parameters for the different fillers

Densitya (gm/cm3) N2 surface areab (m2/gm)

Cloisite 15A 1.66 147 [25]
Pangel B20 2.10 364 [26]
Pyfrograf-III, PR-24 1.95 60 [27]

a Density values have been quoted from respective supplier’s MSDS.
b Total specific surface area (BET surface area) values for the respective nanofillers.



Fig. 4. Modified Kraus plots for the three sets of filler for (a) NR and (b) SBR swollen in benzene. Modified Kraus plots for the three sets of filler for (c) NR and (d) SBR swollen in
toluene.
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their corresponding coefficient of determination are listed in Table 4.
Swelling studies done in both benzene and toluene (Fig. 4a and b)
conform the modified Kraus equation. The high regression coeffi-
cients imply that IAF successfully represents the nanocomposite
properties.

The universal applicability of IAF is also demonstrated by
introducing it into a fluoroelastomer–Cloisite NA polymer nano-
composite, reported earlier from our laboratory [28]. Fig. 5 displays
the modified Kraus plot for the fluoroelastomer nanocomposite. A
Table 4
Slope of the modified Kraus plots and their corresponding coefficient of
determination

NR SBR

Slope, m Coefficient of
determination,
R2

Slope, m Coefficient of
determination,
R2

Filler Bz To Bz To Bz To Bz To
15A 1.34 0.62 0.940 0.948 3.00 2.55 0.994 0.886
SP 1.94 0.73 0.912 0.936 1.17 1.16 0.931 0.863
F 2.59 1.01 0.983 0.969 4.49 3.64 0.998 0.940

Bz¼ benzene, To¼ toluene.
linear fit is observed with a relatively high regression coefficient
value of the best fit line, shown in the graph.

These results indicate both the necessity and efficacy of the
interface area function in understanding the polymer–nanofiller
interaction parameter. It also justifies the approach undertaken to
identify the possible constituents of this function, specifically for
platelet type nanofiller filled polymer nanocomposites.

Fig. 6a–d is the Kraus plot for the three sets of fillers. Fig. 6a and
b corresponds to the swelling studies of the NR PNCs in toluene and
benzene, respectively. Fig. 6c and d is the analogous Kraus plot for
the SBR PNCs. Kraus plot not only exhibits lower regression coef-
ficients of the best fit lines, but also in the case of NR it erroneously
predicts a stronger polymer–nanofiller interaction with sepiolite, in
comparison with carbon nanofiber (discussed later). The slope of
the Kraus plots and their corresponding coefficient of determina-
tion are listed in Table 5. It is seen that there exist some discrep-
ancies in the results of the Kraus plot, if they were to be correlated
to the surface energy data.

We have extended the purview of our interface area function,
by using it to determine Young’s modulus since it is expected
to bear direct effect on the mechanical properties of the
nanocomposites.



Fig. 5. Modified (New fn.) and the unmodified Kraus plots for the Cloisite NA filled
fluoroelastomer nanocomposite.

Fig. 6. Kraus plots for the three sets of NR-filler nanocomposites swollen in (a) toluene and
toluene and (d) benzene.
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We have introduced the IAF in the Guth–Gold (Eq. (1)), modified
Guth–Gold (by Guth, Eq. (2)), Halpin–Tsai (Eq. (3)) and some vari-
ants of modified Halpin–Tsai equations (Eqs. (30) and (31)) to
account for the contribution of the platelet-like filler to Young’s
modulus in polymer nanocomposites.

Fig. 7a–c (for NR) and Fig. 8a–c (for SBR) show the experimental
data along side the data predicted using the above equations. The
line is the best fit line of the experimental data, while the scatter
points are the corresponding values predicted using the various
equations as indicated by their respective legends in the graph.
Guth–Gold (Eq. (1)), modified Guth–Gold (by Guth, Eq. (2)), Halpin–
Tsai (Eq. (3)) and modified Halpin–Tsai (Eqs. (30) and (31)) equa-
tions have been plotted after the introduction of IAF into them.
Young’s modulus was calculated from the slope of the tensile curve
in the linear region (upto 30% elongation). The error is within 2–4%
and hence the error bars are not visible. The scatter points are,
however, unique values predicted by the modified equations, and
hence do not bear error bars.

Table 6 compiles the percent average deviations of the values
predicted by the various constitutive equations studied post-
introduction of the IAF. It is observed from the deviation data (Table
6) that predictions by even the simple Guth–Gold equation (Eq. (1))
derived for spherical fillers are quite accurate, whereas the complex
equations {modified Guth–Gold (by Guth, Eq. (2)) and Halpin–Tsai
(Eq. (3))} containing shape factor and other similar parameters give
exceedingly large deviations (Figs. 7 and 8). The deviation in the
case of Guth–Gold equation is 9–19% while those for modified
(b) benzene. Kraus plots for the three sets of SBR-filler nanocomposites swollen in (c)



Table 5
Slope of the Kraus plots and their corresponding coefficient of determination

NR SBR

Slope, m Coefficient of
determination,
R2

Slope, m Coefficient of
determination,
R2

Filler Bz To Bz To Bz To Bz To
15A 1.68 0.92 0.832 0.875 3.79 3.59 0.942 0.808
SP 3.64 1.52 0.839 0.780 2.88 2.81 0.852 0.608
F 3.51 1.48 0.952 0.777 7.51 5.71 0.930 0.929

Bz¼ benzene, To¼ toluene.
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Guth–Gold and Halpin–Tsai are 248% and 265%, respectively, due to
the above mentioned factors.

Even without the introduction of the correction factor, the Guth
equation per se gives error in prediction as high as 17–35%, in the
case of the nanocomposites studied. The modified Guth–Gold and
Halpin–Tsai equations too are found to be error prone, with 21–
101% and 29–107% error in prediction. These errors increase
continually with nanofiller loading.

The close fit of the experimental data and the values predicted
by the constitutive modified Halpin–Tsai equations I and II (Eqs.
(30) and (31)), as seen in Fig. 7a–c (for NR) and Fig. 8a–c (for
SBR), illustrates the just definition of the IAF. Table 6 also
confirms that newly devised equations, (Eqs. (30) and (31)),
provide astounding results since their predictions conform to the
experimental data.
Fig. 7. Fitment of composite models on introduction of IAF, for the (a) Cloisite 15A, (b) s
4. Discussion

Conventionally, polymer–filler interaction has been studied
using the Kraus plot, the slope of which indicates the measure of
the interaction. The greater the magnitude of the slope, the higher
is the interaction. Kraus had derived the system by considering the
restriction to swelling caused by spherical filler. The nanofillers, the
nanoclay in particular, are not spherical. In fact they are platelet-
like in terms of their structure. On introduction of the interface area
function (IAF) to the erstwhile Kraus equation, it is seen that the
order of the polymer–nanofiller interaction of nanocomposites as
determined from the swelling experiments (Figs. 4a–d and 5) also
agrees with the trends in the modulus (Figs. 7 and 8), shown in the
previous section. Also, the coefficients of determination values of
the best fit lines of the corresponding swelling studies (Table 4) are
satisfactory, as well. In order to determine the suitability of IAF, the
volume swelling studies were carried out by using two different
swelling solvents, benzene and toluene, for both NR and SBR. The
better fit observed in the case of benzene is because it has closer
values of Flory–Huggins parameter for NR (0.435) and SBR(0.398),
than the corresponding values of 0.420 and 0.280 in the case of
toluene.

The above observations made on a large number of rubber–
nanofiller and nanocomposite-swelling solvent systems highlight
that the amendment of the Kraus plot by the introduction of the
interface area function (IAF) renders the plot applicable to PNCs.

It can be inferred from Fig. 6a–d and Table 5 that the Kraus plot
should be adequately modified for accurate determination of the
epiolite and (c) carbon nanofiber filled NR nanocomposites; YM¼ Young’s modulus.



Fig. 8. Fitment of composite models on introduction of IAF, for the (a) Cloisite 15A, (b) sepiolite and (c) carbon nanofiber filled SBR nanocomposites; YM¼ Young’s modulus.

M. Bhattacharya, A.K. Bhowmick / Polymer 49 (2008) 4808–4818 4817
polymer–nanofiller interaction parameter. Here, the coefficients of
determination are significantly less than unity. In terms of statistics
it means that although the present function relating the indepen-
dent variable to the dependent variable is robust, its accuracy of
mapping is hindered possibly because of neglecting certain other
parameters which influence the independent variable.

Further, some discrepancies in determining the trend amongst
the different nanofillers, especially in the case of natural rubber
(Fig. 6a and c) systems are observed in the Kraus plot. The plots
suggest that the interaction parameter would follow the order:
sepiolite> carbon nanofiber> Cloisite 15A. Following Zisman
approach, the trend for polymer–nanofiller interaction is expected
to be decisively in favour of carbon nanofiber by virtue of its higher
surface energy (Table 7). This, however, is not reflected in the case
of NR (Fig. 6a and c). Thus, we can infer that Kraus plot fails to
display the right trend.
Table 6
Percent average deviations of the various constitutive equations, after introduction
of the IAF

Filler 15A SP F

Model NR SBR NR SBR NR SBR

Guth–Gold 16 19 14 13 9 15
Modified Guth–Gold 248 178 184 190 14 15
Halpin–Tsai 265 181 177 182 44 46
Modified Halpin–Tsai I 17 15 15 16 5 2
Modified Halpin–Tsai II 25 0 1 0 0 7
The extent of polymer–nanofiller interaction is in essence
determined by the respective characteristic surface energies of the
polymer and the nanofiller. From Zisman approach, the higher the
filler surface energy, the higher is its wettability by the polymer.
Such wetting is characterized by a high work of adhesion (Wa) and
positive spreading coefficient value. On the other hand, poorly wet
interfaces are indicated by low Wa and negative spreading
coefficients.

The other determining feature is the interparticle cleavage
energy. However, it is extremely difficult to measure for nanofillers.
On cleavage if a mineral undergoes minimal surface reconstruction,
the surface tension can be treated as the free energy of cleavage
which suggests a small entropic contribution, and hence corre-
lating it further to the cleavage energy [29].

We have already discussed in detail the implications of surface
energy (and its various components), the Wa and cleavage energy in
both SBR [22] and NR [23] systems that we have studied.
Table 7
Contact angle and surface energy of the rubbers and the fillers

Sample Contact angle (�) g (mJ/m2) gs
d (mJ/m2) gs

p (mJ/m2)

Water Formamide

NR 100 71 35.10 34.99 0.12
SBR 71 61 33.17 16.07 17.10
Cloisite 15A 88 84 19.37 6.98 12.39
Sepiolite 67 52 38.26 21.53 16.73
C-Fiber 78 48 44.01 39.79 4.22
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Table 7 lists the surface energy (SE) and its two components for
the two rubbers and the three nanofiller systems which have been
the focus of our studies. Following Zisman approach, the surface
energy data would suggest that the order of wetting of filler by
polymer and hence, the polymer–nanofiller interaction should be:
carbon fiber> sepiolite> Cloisite 15A.

This would have been true if the fillers were morphologically
same, which they are not. Sepiolite is a non-expandable clay with
narrow channels along the fiber axis which are densely populated
with highly active Si–OH groups at their edges. Thus it has
equitable contributions from the polar and the dispersive
components to its surface energy. Cloisite (MMT) is expandable
clay of plain layered structure with very few exposed Si–OH
groups, that too at the edges of the very end of each platelet.
Cloisite 15A has the highest (36%) modifier content amongst
modified clays of its kind, and hence demonstrates a precipitous
drop in its observed surface energy value. Carbon fiber eponymic
to its name has long cylindrical fibrous structure with very few
surface active groups.

Thus, carbon fiber having 16% higher SE than sepiolite would
be expected to demonstrate maximum wetting, followed by
sepiolite and Cloisite 15A. The order in fact remains so for natural
rubber (NR), which has linear chains that get accommodated in
the narrow channels in sepiolite’s structure. However, as discussed
earlier [22], for styrene–butadiene rubber (SBR) the order is
altered a bit. This can be attributed to the reduced penetration of
the macromolecular chains into sepiolite’s channels because of the
bulky styrenic side-chain substitutions, as compared to the linear
NR chains.

Thus, taking into account the surface energy and morphological
parameters the expected order for polymer–filler interaction is NR:
carbon nanofiber> sepiolite> Cloisite 15A. SBR: carbon nano-
fiber> Cloisite 15A> sepiolite.

This is indeed reflected in the trends in the mechanical property
enhancements [22,23], but not in the Kraus plot results, which
erroneously suggest that for NR, the interaction parameter would
follow the order: sepiolite> carbon nanofiber> Cloisite 15A.

In order to account for these anomalies in the Kraus plot results,
we derived the interface area function which incorporates the
effects of the filler size, shape and also the correlation length, which
is known to influence polymer nanocomposite properties strongly
[30,31].

In the interface area function (IAF), the aspect ratio of the
nanofillers in the nanocomposites is correlated with the specific
surface area, as explained earlier. Since actual measurement of
thickness of the nanofiller (which is around 1–10 nm) is tedious
and error prone, the sampling errors are minimized by introducing
the characteristic correlation length instead. Correlation length
(which is at least 100 nm for most nanocomposites) was deter-
mined by statistically analyzing TEM micrographs. The introduction
of IAF imparts definitive change to the predicting ability of the
constitutive equations for polymer–filler nanocomposites (Figs. 7
and 8) and Table 6.

These observations further support our approach in evolving
the new IAF and the ability of its constituents to correctly
represent the shape and aggregate parameters. This is under-
lined by the fact that even the Guth–Gold equation on intro-
duction of our IAF predicts Young’s modulus with a great degree
of accuracy. On the other hand, the pre-incorporation of shape
related factors in the IAF causes a multiplicative term to be
carried through in the case of modified Guth–Gold and Halpin–
Tsai equations. Since these equations already have shape related
correction introduced (to address rod-like fillers, instead of
spherical fillers) the inclusion of IAF results in gross over esti-
mation, especially at higher loadings of nanofillers with high
specific surface areas.
5. Conclusions

For polymer nanocomposites, the polymer–nanofiller interac-
tion parameter has seldom been studied in terms of the Kraus plot.
In fact its viability too has not been studied. On attempting that we
observe certain discrepancies in trend depiction vis-à-vis that
expected from surface energy data. Also, the plots are plagued by
low regression coefficient values.

On modifying the basic tenet by substituting the spherical
inclusion with an elliptical platelet-like restraining body it is found
that certain terms characteristic of nanofillers surface in the
equation. It signifies the need of a correction factor which is
incorporated in the form of an interface area function (IAF). This
correction factor comprising of the specific surface area, correlation
length between nanofillers in the composite and the filler volume
fraction results not only in better fitment, indicated by higher
regression coefficients, but also conformance with the trend pre-
dicted by surface energy data.

The accurate representation of the polymer–nanofiller interac-
tion by the IAF is also highlighted by the improvement in the
predictive capabilities of simple composite models, the Guth–Gold
equation, on its introduction. Since the IAF suitably integrates the
shape and aggregate effects in PNCs, it was applied to tailor the
Halpin–Tsai equation into much simpler forms for PNCs comprising
of matrix–filler combinations having extremely large difference in
Young’s moduli. Unlike original Halpin–Tsai equations, these were
able to predict the composite’s Young’s modulus within acceptable
limits, which further underline the necessity of inclusion of IAF and
the justification in choosing its constituents.
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